Applying Variational Circuits in Deep Learning Architectures for Improving Discriminative Power of Speaker Identification Embeddings

Переведенная тема диплома: Применение вариационных схем в архитектурах глубокого обучения для усиления дискриминативных свойств вложений в задаче идентификации дикторов
  • Рафаэль Бланксон

Диссертация студента: Выпускная квалификационная работаВКР магистра

Аннотация

Recently, the advancement in quantum technologies has had a massive impact on the development of quantum algorithms on near-term quantum devices. Variational circuits, a combination of both quantum and classical algorithms, have been very useful in these advancements on near-term quantum devices. Despite these advances, most quantum applications in machine learning
(deep learning) especially in transfer learning have been proof-of-concept in the qubit system and very little in the continuousvariable space but no or little application to audio data.
This study applies variational circuits to practical real-life speaker classification data for the first time in the continuous-variable system to investigate whether the speaker embeddings can be improved by applying quantum models. In separate experiments, the quantum model was combined with a simple convolutional neural network and ResNet18 model respectively and the results was compared to the classical ResNet18 model applied on the same speaker dataset. The simple convolutional with quantum model outperformed the ResNet18 quantum model significantly but were worse compared to the classical ResNet18 model. The use of the mixup algorithm significantly improved the performance of the quantum models.
Further investigation is needed to model-specific problems that classical models cannot solve and to show a quantum advantage.
Дата присуждения15 июн. 2021
Язык оригиналаанглийский
Учреждение
  • Новосибирский государственный университет
РуководительЕвгений Николаевич Павловский (Научный руководитель)

Цитировать

'