Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension

Yuri Trakhinin, Tao Wang

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

1 Цитирования (Scopus)

Аннотация

We establish the local existence and uniqueness of solutions to the free-boundary ideal compressible magnetohydrodynamic equations with surface tension in three spatial dimensions by a suitable modification of the Nash–Moser iteration scheme. The main ingredients in proving the convergence of the scheme are the tame estimates and unique solvability of the linearized problem in the anisotropic Sobolev spaces H∗m for m large enough. In order to derive the tame estimates, we make full use of the boundary regularity enhanced from the surface tension. The unique solution of the linearized problem is constructed by designing some suitable ε–regularization and passing to the limit ε→ 0.

Язык оригиналаанглийский
Страницы (с-по)761-808
Число страниц48
ЖурналMathematische Annalen
Том383
Номер выпуска1-2
DOI
СостояниеОпубликовано - июн 2022

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать