Аннотация
This paper presents an automatic algorithm for the segmentation of areas affected by an acute stroke in the non-contrast computed tomography brain images. The proposed algorithm is designed for learning in a weakly supervised scenario when some images are labeled accurately, and some images are labeled inaccurately. Wrong labels appear as a result of inaccuracy made by a radiologist in the process of manual annotation of computed tomography images. We propose methods for solving the segmentation problem in the case of inaccurately labeled training data. We use the U-Net neural network architecture with several modifications. Experiments on real computed tomography scans show that the proposed methods increase the segmentation accuracy.
Язык оригинала | английский |
---|---|
Номер статьи | 012021 |
Журнал | Journal of Physics: Conference Series |
Том | 2099 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 13 дек. 2021 |
Событие | International Conference on Marchuk Scientific Readings 2021, MSR 2021 - Novosibirsk, Virtual, Российская Федерация Продолжительность: 4 окт. 2021 → 8 окт. 2021 |
Предметные области OECD FOS+WOS
- 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ