Vaught's conjecture for quite o-minimal theories

B. Sh Kulpeshov, S. V. Sudoplatov

Результат исследования: Научные публикации в периодических изданияхстатья

11 Цитирования (Scopus)

Аннотация

We study Vaught's problem for quite o-minimal theories. Quite o-minimal theories form a subclass of the class of weakly o-minimal theories preserving a series of properties of o-minimal theories. We investigate quite o-minimal theories having fewer than 2ω countable models and prove that the Exchange Principle for algebraic closure holds in any model of such a theory and also we prove binarity of these theories. The main result of the paper is that any quite o-minimal theory has either 2ω countable models or 6a3b countable models, where a and b are natural numbers.

Язык оригиналаанглийский
Страницы (с-по)129-149
Число страниц21
ЖурналAnnals of Pure and Applied Logic
Том168
Номер выпуска1
DOI
СостояниеОпубликовано - 1 янв 2017

Fingerprint Подробные сведения о темах исследования «Vaught's conjecture for quite o-minimal theories». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать