Vassiliev measures of complexity of open and closed curves in 3-space

Eleni Panagiotou, Louis H. Kauffman

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

In this article, we define Vassiliev measures of complexity for open curves in 3-space. These are related to the coefficients of the enhanced Jones polynomial of open curves in 3-space. These Vassiliev measures are continuous functions of the curve coordinates; as the ends of the curve tend to coincide, they converge to the corresponding Vassiliev invariants of the resulting knot. We focus on the second Vassiliev measure from the enhanced Jones polynomial for closed and open curves in 3-space. For closed curves, this second Vassiliev measure can be computed by a Gauss code diagram and it has an integral formulation, the double alternating self-linking integral. The double alternating self-linking integral is a topological invariant of closed curves and a continuous function of the curve coordinates for open curves in 3-space. For polygonal curves, the double alternating self-linking integral obtains a simpler expression in terms of geometric probabilities.

Язык оригиналаанглийский
Номер статьи20210440
Число страниц18
ЖурналProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Том477
Номер выпуска2254
DOI
СостояниеОпубликовано - 1 окт. 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА
  • 2.11 ПРОЧИЕ ТЕХНОЛОГИИ

Fingerprint

Подробные сведения о темах исследования «Vassiliev measures of complexity of open and closed curves in 3-space». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать