Using deep learning to enhance event geometry reconstruction for the telescope array surface detector

D. Ivanov, O. E. Kalashev, M. Yu Kuznetsov, G. Rubtsov, T. Sako, Y. Tsunesada, Y. Zhezher

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

The extremely low flux of ultra-high energy cosmic rays (UHECR) makes their direct observation by orbital experiments practically impossible. For this reason all current and planned UHECR experiments detect cosmic rays indirectly by observing the extensive air showers (EAS) initiated by cosmic ray particles in the atmosphere. The world largest statistics of the ultra-high energy EAS events is recorded by the networks of surface stations. In this paper we consider a novel approach for reconstruction of the arrival direction of the primary particle based on the deep convolutional neural network. The latter is using raw time-resolved signals of the set of the adjacent trigger stations as an input. The Telescope Array (TA) Surface Detector (SD) is an array of 507 stations, each containing two layers plastic scintillator with an area of 3 m(2). The training of the model is performed with the Monte-Carlo dataset. It is shown that within the Monte-Carlo simulations, the new approach yields better resolution than the traditional reconstruction method based on the fitting of the EAS front. The details of the network architecture and its optimization for this particular task are discussed.

Язык оригиналаанглийский
Номер статьи015006
Число страниц11
ЖурналMachine learning-Science and technology
Том2
Номер выпуска1
DOI
СостояниеОпубликовано - мар. 2021

Fingerprint

Подробные сведения о темах исследования «Using deep learning to enhance event geometry reconstruction for the telescope array surface detector». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать