Аннотация
A symmetric Cantor set Kpq in [0, 1] with double fixed points 0 and 1 and contraction ratios p and q is called twofold Cantor set if it satisfies special exact overlap condition. We prove that all twofold Cantor sets have isomorphic self-similar structures and do not have weak separation property and that for Lebesgue-almost all (p, q) ∈ [0, 1/16]2 the sets Kpq are twofold Cantor sets.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 801-814 |
Число страниц | 14 |
Журнал | Сибирские электронные математические известия |
Том | 15 |
DOI | |
Состояние | Опубликовано - 1 янв. 2018 |