Two-level iterative methods for solving the saddle point problems

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование


Iterative processes in the Krylov subspaces for solving large ill conditioned saddle-type SLAEs with sparse matrices arising in finite difference, finite volume, and finite element approximations of multidimensional boundary value problems with complex geometric and functional properties of the initial data, characteristic of many relevant applications are studied. Combined two-level iterative algorithms using efficient Chebyshev acceleration and variational the conjugate directions methods, as well as the Golub-Kahan bi-diagonalization algorithms in the Krylov subspaces are considered. Examples of two-dimensional and three-dimensional filtration problems are used to study the resource consumption and computational performance of the proposed algorithms, as well as their scalable parallization on the multiprocessor systems with distributed and hierarchical shared memory.

Язык оригиналаанглийский
Номер статьи012004
ЖурналJournal of Physics: Conference Series
Номер выпуска1
СостояниеОпубликовано - 4 янв 2021
СобытиеInternational Conference on Marchuk Scientific Readings 2020, MSR 2020 - Akademgorodok, Novosibirsk, Российская Федерация
Продолжительность: 19 окт 202023 окт 2020


Подробные сведения о темах исследования «Two-level iterative methods for solving the saddle point problems». Вместе они формируют уникальный семантический отпечаток (fingerprint).