Аннотация
As in the case of irreducible holomorphic symplectic manifolds, the period domain Compl of compact complex tori of even dimension 2n contains twistor lines. These are special 2-spheres parametrizing complex tori whose complex structures arise from a given quaternionic structure. In analogy with the case of irreducible holomorphic symplectic manifolds, we show that the periods of any two complex tori can be joined by a generic chain of twistor lines. We also prove a criterion of twistor path connectivity of loci in Compl where a fixed second cohomology class stays of Hodge type (1,1). Furthermore, we show that twistor lines are holomorphic submanifolds of Compl, of degree 2n in the Plücker embedding of Compl.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 21-47 |
Число страниц | 27 |
Журнал | Geometriae Dedicata |
Том | 213 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - авг. 2021 |
Предметные области OECD FOS+WOS
- 1.01.PQ МАТЕМАТИКА