Turing Degrees and Automorphism Groups of Substructure Lattices

R. D. Dimitrov, V. Harizanov, A. S. Morozov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование


The study of automorphisms of computable and other structures connects computability theory with classical group theory. Among the noncomputable countable structures, computably enumerable structures are one of the most important objects of investigation in computable model theory. Here we focus on the lattice structure of computably enumerable substructures of a given canonical computable structure. In particular, for a Turing degree d, we investigate the groups of d-computable automorphisms of the lattice of d-computably enumerable vector spaces, of the interval Boolean algebra Bη of the ordered set of rationals, and of the lattice of d-computably enumerable subalgebras of Bη. For these groups, we show that Turing reducibility can be used to substitute the group-theoretic embedding. We also prove that the Turing degree of the isomorphism types for these groups is the second Turing jump d′′ of d.

Язык оригиналаанглийский
Страницы (с-по)18-32
Число страниц15
ЖурналAlgebra and Logic
Номер выпуска1
СостояниеОпубликовано - 1 мар 2020

Fingerprint Подробные сведения о темах исследования «Turing Degrees and Automorphism Groups of Substructure Lattices». Вместе они формируют уникальный семантический отпечаток (fingerprint).