Towards optimal and expressive kernelization for d-hitting set

Результат исследования: Научные публикации в периодических изданияхстатья

22 Цитирования (Scopus)

Аннотация

A sunflower in a hypergraph is a set of hyperedges pairwise intersecting in exactly the same vertex set. Sunflowers are a useful tool in polynomial-time data reduction for problems formalizable as d-Hitting Set, the problem of covering all hyperedges (whose cardinality is bounded from above by a constant d) of a hypergraph by at most k vertices. Additionally, in fault diagnosis, sunflowers yield concise explanations for "highly defective structures". We provide a linear-time algorithm that, by finding sunflowers, transforms an instance of d-Hitting Set into an equivalent instance comprising at most O(k d ) hyperedges and vertices. In terms of parameterized complexity, we show a problem kernel with asymptotically optimal size (unless coNP ⊂/poly) and provide experimental results that show the practical applicability of our algorithm. Finally, we show that the number of vertices can be reduced to O(k d-1) with additional processing in O(k 1.5d ) time - nontrivially combining the sunflower technique with problem kernels due to Abu-Khzam and Moser.

Язык оригиналаанглийский
Страницы (с-по)129-147
Число страниц19
ЖурналAlgorithmica
Том70
Номер выпуска1
DOI
СостояниеОпубликовано - 1 янв 2014
Опубликовано для внешнего пользованияДа

Fingerprint Подробные сведения о темах исследования «Towards optimal and expressive kernelization for d-hitting set». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать