Topological aspects of quantum entanglement

Louis H. Kauffman, Eshan Mehrotra

Результат исследования: Научные публикации в периодических изданияхстатья

3 Цитирования (Scopus)

Аннотация

Kauffman and Lomonaco (New J Phys 4:73.1–73.18, 2002. arXiv:quant-ph/0401090, New J Phys 6:134.1–134.40, 2004) explored the idea of understanding quantum entanglement (the non-local correlation of certain properties of particles) topologically by viewing unitary entangling operators as braiding operators. In Alagic et al. (Yang–Baxter operators need quantum entanglement to distinguish knots, 2015. arXiv:1507.05979v1), it is shown that entanglement is a necessary condition for forming non-trivial invariants of knots from braid closures via solutions to the Yang–Baxter equation. We show that the arguments used by Alagic et al. (2015) generalize to essentially the same results for quantum invariant state summation models of knots. In one case (the unoriented swap case) we give an example of a Yang–Baxter operator, and associated quantum invariant, that can detect the Hopf link. Again this is analogous to the results of Alagic et al. (2015). We also give a class of R matrices that are entangling and are weak invariants of classical knots and links yet strong invariants of virtual knots and links. We also give an example of an SU(2) representation of the three-strand braid group that models the Jones polynomial for closures of three-strand braids. This invariant is a quantum model for the Jones polynomial restricted to three-strand braids, and it does not involve quantum entanglement. These relationships between topological braiding and quantum entanglement can be used as a framework for future work in understanding the properties of entangling gates in topological quantum computing. The paper ends with a discussion of the Aravind hypothesis about the direct relationship of knots and quantum entanglement and the ER= EPR hypothesis about the relationship of quantum entanglement with the connectivity of space. We describe how, given a background space and a quantum tensor network, to construct a new topological space that welds the network and the background space together. This construction embodies the principle that quantum entanglement and topological connectivity are intimately related.

Язык оригиналаанглийский
Номер статьи76
Число страниц36
ЖурналQuantum Information Processing
Том18
Номер выпуска3
DOI
СостояниеОпубликовано - 1 мар 2019

Fingerprint Подробные сведения о темах исследования «Topological aspects of quantum entanglement». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать