Time-universal data compression and prediction

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

1 Цитирования (Scopus)


Suppose there is a large file which should be transmitted (or stored) and there are several (say, m) admissible data-compressors. It seems natural to try all the compressors and then choose the best, i.e. the one that gives the shortest compressed file. Then transfer (or store) the index number of the best compressor (it requires [log m] bits) the compressed file. The only problem is the time, which essentially increases due to the need to compress the file m times (in order to find the best compressor). We propose a method that encodes the file with the optimal compressor, but uses a relatively small additional time: the ratio of this extra time and the total time of calculation can be limited by an arbitrary positive constant. A similar situation occurs when forecasting time series.Generally speaking, in many situations it may be necessary find the best data compressor (or predictor) out of a given set, which is often done by comparing them empirically. One of the goals of this work is to turn such a selection process into a part of the data compression method, automating and optimizing it.

Язык оригиналаанглийский
Название основной публикации2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
ИздательInstitute of Electrical and Electronics Engineers Inc.
Число страниц5
ISBN (электронное издание)9781538692912
СостояниеОпубликовано - 1 июл 2019
Событие2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, Франция
Продолжительность: 7 июл 201912 июл 2019

Серия публикаций

НазваниеIEEE International Symposium on Information Theory - Proceedings
ISSN (печатное издание)2157-8095


Конференция2019 IEEE International Symposium on Information Theory, ISIT 2019


Подробные сведения о темах исследования «Time-universal data compression and prediction». Вместе они формируют уникальный семантический отпечаток (fingerprint).