Аннотация
In this paper, we show that four-dimensional quasilinear systems of first order integrable by the method of two-dimensional hydrodynamic reductions possess infinitely many three-dimensional hydrodynamic reductions, which are also integrable systems. These three-dimensional multi-component integrable systems are irreducible to twodimensional hydrodynamic reductions in a generic case.
Язык оригинала | английский |
---|---|
Номер статьи | 111510 |
Число страниц | 9 |
Журнал | Journal of Mathematical Physics |
Том | 58 |
Номер выпуска | 11 |
DOI | |
Состояние | Опубликовано - 1 нояб. 2017 |