Аннотация
A nonempty class X of finite groups is called complete if it is closed under taking subgroups, homomorphic images and extensions. We consider two definitions of submaximal X-subgroups suggested by H. Wielandt and discuss which one better suits the task of determining maximal X-subgroups. We prove that these definitions are not equivalent yet the Wielandt–Hartley theorem holds true for either definition of X-submaximality. We also give some applications of the strong version of the Wielandt–Hartley theorem.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 143-155 |
Число страниц | 13 |
Журнал | Monatshefte fur Mathematik |
Том | 193 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 сен 2020 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА