The strong activity of noctilucent clouds at middle latitudes in 2020

Peter Dalin, Hidehiko Suzuki, Nikolay Pertsev, Vladimir Perminov, Nikita Shevchuk, Egor Tsimerinov, Mark Zalcik, Jay Brausch, Tom McEwan, Iain McEachran, Martin Connors, Ian Schofield, Audrius Dubietis, Kazimieras Černis, Alexander Zadorozhny, Andrey Solodovnik, Daria Lifatova, Jesper Grønne, Ole Hansen, Holger AndersenDmitry Melnikov, Alexander Manevich, Nikolay Gusev, Vitaly Romejko

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование


The 2020 summer season had more frequent than usual occurrences of noctilucent clouds (NLCs) in the Northern Hemisphere at middle latitudes (45–50°N), with the lowest latitude at which NLCs were seen being 34.1°N. In order to investigate a reason for this extraordinary NLC season, we have analyzed long-term Aura/MLS satellite data for all available summer periods from 2005 to 2021. Both Aura/MLS summer temperature and water vapor in the mesopause region, between about 79 and 89 km altitude, have been considered. There has been a decrease in the summer mesopause temperature between 2016 and 2020. At the same time, water vapor mixing ratio has significantly increased (by about 12–17%) in the zonal mean H2O value in the 2020 summer compared to 2017. There exists a positive linear trend in the H2O amount by about 5% between 2005 and 2021 at middle latitudes 45–50°N at 0.0046 hPa. A combination of lower mesopause temperature and water vapor mixing ratio maximum at middle latitudes is the main reason for frequent and widespread occurrences of NLCs seen around the globe at middle latitudes in the summer of 2020. The 24th solar cycle minimum can explain neither the H2O maximum nor NLC maximum in 2020.

Язык оригиналаанглийский
Номер статьи100920
ЖурналPolar Science
Ранняя дата в режиме онлайн5 дек. 2022
СостояниеЭлектронная публикация перед печатью - 5 дек. 2022

Предметные области OECD FOS+WOS