The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in Rd does not always remain unaltered during the flex

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

Being motivated by the theory of flexible polyhedra, we study the Dirichlet and Neumann eigenvalues for the Laplace operator in special bounded domains of Euclidean d-space. The boundary of such a domain is an embedded simplicial complex which allows a continuous deformation (a flex), under which each simplex of the complex moves as a solid body and the change in the spatial shape of the domain is achieved through a change of the dihedral angles only. The main result of this article is that both the Dirichlet and Neumann spectra of the Laplace operator in such a domain do not necessarily remain unaltered during the flex of its boundary.

Язык оригиналаанглийский
Номер статьи32
Число страниц14
ЖурналJournal of Geometry
Том111
Номер выпуска2
DOI
СостояниеОпубликовано - 3 июн 2020

Fingerprint Подробные сведения о темах исследования «The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in R<sup>d</sup> does not always remain unaltered during the flex». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать