The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution

P. I. Tesemnivkov, S. G. Foss

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Foss and Zachary (2003) and Foss, Palmowski and Zachary (2005) studied the probability of achieving a receding boundary on a time interval of random length by a random walk with a heavy-tailed jump distribution. They have proposed and developed a new approach that allows one to generalise the results of Asmussen (1998) to the case of arbitrary stopping times and to a wide class of nonlinear boundaries, and to obtain uniform results over all stopping times. In this paper, we consider a class of branching random walks with fading branching and obtain results on the tail asymptotics for the maximum of a branching random walk on a time interval of random (possibly unlimited) length, as well as uniform results within a class of bounded random time intervals.

Язык оригиналаанглийский
Страницы (с-по)318-335
Число страниц18
ЖурналProceedings of the Steklov Institute of Mathematics
Том316
Номер выпуска1
DOI
СостояниеОпубликовано - мар. 2022

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать