The New Version of the ANDDigest Tool with Improved AI-Based Short Names Recognition

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

The body of scientific literature continues to grow annually. Over 1.5 million abstracts of biomedical publications were added to the PubMed database in 2021. Therefore, developing cognitive systems that provide a specialized search for information in scientific publications based on subject area ontology and modern artificial intelligence methods is urgently needed. We previously developed a web-based information retrieval system, ANDDigest, designed to search and analyze information in the PubMed database using a customized domain ontology. This paper presents an improved ANDDigest version that uses fine-tuned PubMedBERT classifiers to enhance the quality of short name recognition for molecular-genetics entities in PubMed abstracts on eight biological object types: cell components, diseases, side effects, genes, proteins, pathways, drugs, and metabolites. This approach increased average short name recognition accuracy by 13%.

Язык оригиналаанглийский
Номер статьи14934
ЖурналInternational Journal of Molecular Sciences
Том23
Номер выпуска23
DOI
СостояниеОпубликовано - дек. 2022

Предметные области OECD FOS+WOS

  • 1.02 КОМПЬЮТЕРНЫЕ И ИНФОРМАЦИОННЫЕ НАУКИ
  • 2.04 ХИМИЧЕСКИЕ ТЕХНОЛОГИИ
  • 1.04 ХИМИЧЕСКИЕ НАУКИ
  • 1.06 БИОЛОГИЧЕСКИЕ НАУКИ

Цитировать