Autism spectrum disorder (ASD) has a strong and complex genetic component with an estimate of more than 1000 genes implicated cataloged in SFARI (Simons Foundation Autism Research Initiative) gene database. A significant part of both syndromic and idiopathic autism cases can be attributed to disorders caused by the mechanistic target of rapamycin (mTOR)-dependent translation deregulation. We conducted gene-set analyses and revealed that 606 out of 1053 genes (58%) included in the SFARI Gene database and 179 out of 281 genes (64%) included in the first three categories of the database (“high confidence”, “strong candidate”, and “suggestive evidence”) could be attributed to one of the four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, 4. vitamin D3 sensitive genes. The additional gene network analysis revealed 43 new genes and 127 new interactions, so in the whole 222 out of 281 (79%) high scored genes from SFARI Gene database were connected with mTOR signaling activity and/or dependent on vitamin D3 availability directly or indirectly. We hypothesized that genetic and/or environment mTOR hyperactivation, including provocation by vitamin D deficiency, might be a common mechanism controlling the expressivity of most autism predisposition genes and even core symptoms of autism.

Язык оригиналаанглийский
Номер статьи6332
Число страниц14
ЖурналInternational Journal of Molecular Sciences
Номер выпуска24
СостояниеОпубликовано - 15 дек 2019

Fingerprint Подробные сведения о темах исследования «The mTOR signaling pathway activity and vitamin d availability control the expression of most autism predisposition genes». Вместе они формируют уникальный семантический отпечаток (fingerprint).