The Morse–Sard Theorem and Luzin N-Property: A New Synthesis for Smooth and Sobolev Mappings

A. Ferone, M. V. Korobkov, A. Roviello

Результат исследования: Научные публикации в периодических изданияхстатья

1 Цитирования (Scopus)

Аннотация

Considering regular mappings of Euclidean spaces, we study the distortion of the Hausdorff dimension of a given set under restrictions on the rank of the gradient on the set. This problem was solved for the classical cases of k-smooth and Hölder mappings by Dubovitskii, Bates, and Moreira. We solve the problem for Sobolev and fractional Sobolev classes as well. Here we study the Sobolev case under minimal integrability assumptions that guarantee in general only the continuity of a mapping (rather than differentiability everywhere). Some new facts are found out in the classical smooth case. The proofs are mostly based on our previous joint papers with Bourgain and Kristensen (2013, 2015).

Язык оригиналаанглийский
Страницы (с-по)916-926
Число страниц11
ЖурналSiberian Mathematical Journal
Том60
Номер выпуска5
DOI
СостояниеОпубликовано - 1 сен 2019

Fingerprint Подробные сведения о темах исследования «The Morse–Sard Theorem and Luzin N-Property: A New Synthesis for Smooth and Sobolev Mappings». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать