The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation

A. A. Gavril’eva, Yu G. Gubarev, M. P. Lebedev

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

4 Цитирования (Scopus)

Аннотация

We study the problem of the linear stability of stationary plane-parallel shear flows of an inviscid stratified incompressible fluid in the gravity field between two fixed impermeable solid parallel infinite plates with respect to plane perturbations in the Boussinesq approximation and without it. For both cases, we construct some analytical examples of steady plane-parallel shear flows of an ideal density-heterogeneous incompressible fluid and small plane perturbations in the form of normal waves imposed on them, whose asymptotic behavior proves that these perturbations grow in time regardless of whether the well-known result of spectral stability theory (the Miles Theorem) is valid or not.

Язык оригиналаанглийский
Страницы (с-по)460-471
Число страниц12
ЖурналJournal of Applied and Industrial Mathematics
Том13
Номер выпуска3
DOI
СостояниеОпубликовано - 1 июл. 2019

Fingerprint

Подробные сведения о темах исследования «The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать