The least squares collocation method for the biharmonic equation in irregular and multiply-connected domains

Vasily Shapeev, Sergey Golushko, Luka Bryndin, Vasily Belyaev

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференции

1 Цитирования (Scopus)

Аннотация

This paper reports new h-and p-versions of the least squares collocation method of high-order accuracy proposed and implemented for solving boundary value problems for the biharmonic equation in irregular and multiply-connected domains. This paper shows that approximate solutions obtained by the least squares collocation method converge with high order and agree with analytical solutions of test problems with high degree of accuracy. There has been a comparison made for the results achieved in this study and results of other authors who used finite difference and spectral methods.

Язык оригиналаанглийский
Номер статьи012076
Число страниц7
ЖурналJournal of Physics: Conference Series
Том1268
Номер выпуска1
DOI
СостояниеОпубликовано - 16 июл 2019
СобытиеAll-Russian Conference and School for Young Scientists, devoted to 100th Anniversary of Academician L.V. Ovsiannikov on Mathematical Problems of Continuum Mechanics, MPCM 2019 - Novosibirsk, Российская Федерация
Продолжительность: 13 мая 201917 мая 2019

Fingerprint Подробные сведения о темах исследования «The least squares collocation method for the biharmonic equation in irregular and multiply-connected domains». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать