Аннотация
The paper aims to estimate the error of a cubature formula acting on an arbitrary function from the Sobolev space on a multidimensional cube. The norm of the error in the dual space of the Sobolev class is represented as a positive definite quadratic form in the weights of the cubature formula. Given a finite smoothness s of the Sobolev space, we establish a power-law convergence order to zero of error functionals norms for near minimal cubature formulas and cubature formulas of high trigonometric degree. If the smoothness s of the Sobolev space tends to infinity then the power-law convergence order tends to infinity as well.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 1213-1224 |
Число страниц | 12 |
Журнал | Complex Variables and Elliptic Equations |
Том | 66 |
Номер выпуска | 8 |
DOI | |
Состояние | Опубликовано - 2021 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА