The infinite convergence order of near minimal cubature formulas on classes of periodic functions

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

The paper aims to estimate the error of a cubature formula acting on an arbitrary function from the Sobolev space on a multidimensional cube. The norm of the error in the dual space of the Sobolev class is represented as a positive definite quadratic form in the weights of the cubature formula. Given a finite smoothness s of the Sobolev space, we establish a power-law convergence order to zero of error functionals norms for near minimal cubature formulas and cubature formulas of high trigonometric degree. If the smoothness s of the Sobolev space tends to infinity then the power-law convergence order tends to infinity as well.

Язык оригиналаанглийский
Страницы (с-по)1213-1224
Число страниц12
ЖурналComplex Variables and Elliptic Equations
Том66
Номер выпуска8
DOI
СостояниеОпубликовано - 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «The infinite convergence order of near minimal cubature formulas on classes of periodic functions». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать