Аннотация
We study the nonhomogeneous boundary value problem for the Navier–Stokes equations of steady motion of a viscous incompressible fluid in a three-dimensional exterior domain with multiply connected boundary. We prove that this problem has a solution for axially symmetric domains and data (without any smallness restrictions on the fluxes). Our main tool is a recent version of the Morse–Sard theorem for Sobolev functions obtained by Bourgain et al. (Rev Mat Iberoam 29(1):1–23, 2013).
Язык оригинала | английский |
---|---|
Страницы (с-по) | 727-784 |
Число страниц | 58 |
Журнал | Mathematische Annalen |
Том | 370 |
Номер выпуска | 1-2 |
DOI | |
Состояние | Опубликовано - 1 фев 2018 |