The comparison of convolution neural network? for localized capturing detection of faults on seismic images

A. Lapteva, G. Loginov, A. Duchkov, S. Alyamkin

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

Due to the large volumes of seismic in the industry, there is a constant effort to develop automatic or semi-automatic tools for picking horizons, faults etc. The variety of convolution neural networks proposed for automatic interpretation of seismic images, especially for faults detection. In this paper, we test different CNN models for faults detection and derive the key neural network parameters that influence on the faults localization. We aim to derive the CNN parameters, that allows to detect thin area of the fault and balanced detection of the unmarked faults. We provide the experiments on the open F3 Northen Block dataset, which is popular for benchmarking of the machine learning solutions in seismic interpretation. The best of the tested models allows to highlight the unmarked faults. The accuracy of this model for test and validation dataset is 0.97/0.96, precision, recall and f1 score for faults and background classes are 0.55/0.87, 1.00/0.98, 0.68/0.99, the Jaccard similarity score is 0.94.

Язык оригиналаанглийский
Название основной публикации81st EAGE Conference and Exhibition 2019
ИздательEAGE Publishing BV
ISBN (электронное издание)9789462822894
СостояниеОпубликовано - 3 июн 2019
Событие81st EAGE Conference and Exhibition 2019 - London, Великобритания
Продолжительность: 3 июн 20196 июн 2019

Серия публикаций

Название81st EAGE Conference and Exhibition 2019

Конференция

Конференция81st EAGE Conference and Exhibition 2019
СтранаВеликобритания
ГородLondon
Период03.06.201906.06.2019

Fingerprint Подробные сведения о темах исследования «The comparison of convolution neural network? for localized capturing detection of faults on seismic images». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Lapteva, A., Loginov, G., Duchkov, A., & Alyamkin, S. (2019). The comparison of convolution neural network? for localized capturing detection of faults on seismic images. В 81st EAGE Conference and Exhibition 2019 (81st EAGE Conference and Exhibition 2019). EAGE Publishing BV.