The classification of quadratic APN functions in 7 variables and combinatorial approaches to search for APN functions

Konstantin Kalgin, Valeriya Idrisova

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

Almost perfect nonlinear functions possess optimal resistance to differential cryptanalysis and are widely studied. Most known APN functions are defined using their representation as a polynomial over a finite field and very little is known about combinatorial constructions of them on F2n. In this work we propose two approaches for obtaining quadratic APN functions on F2n. The first approach exploits a secondary construction idea, it considers how to obtain a quadratic APN function in n + 1 variables from a given quadratic APN function in n variables using special restrictions on the new terms. The second approach is searching for quadratic APN functions that have a matrix representation partially filled with the standard basis vectors in a cyclic manner. This approach allows us to find a new APN function in 7 variables. We prove that the updated list of quadratic APN functions in dimension 7 is complete up to CCZ-equivalence. Also, we observe that the quadratic parts of some APN functions have a low differential uniformity. This observation allows us to introduce a new subclass of APN functions, the so-called stacked APN functions. These are APN functions of algebraic degree d such that eliminating monomials of degrees k + 1,…, d for any k < d results in APN functions of algebraic degree k. We provide cubic examples of stacked APN functions for dimensions up to 6.

Язык оригиналаанглийский
ЖурналCryptography and Communications
DOI
СостояниеПринято в печать - 2022

Предметные области OECD FOS+WOS

  • 1.02 КОМПЬЮТЕРНЫЕ И ИНФОРМАЦИОННЫЕ НАУКИ
  • 1.01 МАТЕМАТИКА

Fingerprint

Подробные сведения о темах исследования «The classification of quadratic APN functions in 7 variables and combinatorial approaches to search for APN functions». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать