The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

The Manturov (2, 3)-group G32 is the group generated by three elements a, b, and c with defining relations a(2) = b(2) = c(2) = (abc)(2) = 1. We explicitly calculate the Anick chain complex for G32 by algebraic discrete Morse theory and evaluate the Hochschild cohomology groups of the group algebra kG32 with coefficients in all 1-dimensional bimodules over a field kof characteristic zero.

Язык оригиналаанглийский
Страницы (с-по)11-20
Число страниц10
ЖурналSiberian Mathematical Journal
Том61
Номер выпуска1
DOI
СостояниеОпубликовано - янв 2020

Fingerprint

Подробные сведения о темах исследования «The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать