The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics

A. A. Cherevko, E. E. Bord, A. K. Khe, V. A. Panarin, K. J. Orlov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

5 Цитирования (Scopus)

Аннотация

This article proposes the generalized model of Van der Pol - Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.

Язык оригиналаанглийский
Номер статьи012012
Число страниц6
ЖурналJournal of Physics: Conference Series
Том894
Номер выпуска1
DOI
СостояниеОпубликовано - 22 окт. 2017

Fingerprint

Подробные сведения о темах исследования «The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать