Testing Basic Gradient Turbulent Transport Models for Swirl Burners Using PIV and PLIF

Alexey Savitskii, Aleksei Lobasov, Dmitriy Sharaborin, Vladimir Dulin

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

Аннотация

The present paper reports on the combined stereoscopic particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) measurements of turbulent transport for model swirl burners without combustion. Two flow types were considered, namely the mixing of a free jet with surrounding air for different swirl rates of the jet (Re = 5 × 103) and the mixing of a pilot jet (Re = 2 × 104) with a high‐swirl co‐flow of a generic gas turbine burner (Re = 3 × 104). The measured spatial distributions of the turbulent Reynolds stresses and fluxes were compared with their predictions by gradient turbulent transport models. The local values of the turbulent viscosity and turbulent diffusivity coefficients were evaluated based on Boussinesq’s and gradient diffusion hypotheses. The studied flows with high swirl were characterized by a vortex core breakdown and intensive coherent flow fluctuations associated with large‐scale vortex structures. Therefore, the contribution of the coherent flow fluctuations to the turbulent transport was evaluated based on proper orthogonal decomposition (POD). The turbulent viscosity and diffusion coefficients were also evaluated for the stochastic (residual) component of the velocity fluctuations. The high‐swirl flows with vortex breakdown for the free jet and for the combustion chamber were characterized by intensive turbulent fluctuations, which contributed substantially to the local turbulent transport of mass and momentum. Moreover, the high‐swirl flows were characterized by counter‐gradient transport for one Reynolds shear stress component near the jet axis and in the outer region of the mixing layer.

Язык оригиналаанглийский
Номер статьи383
ЖурналFluids
Том6
Номер выпуска11
DOI
СостояниеОпубликовано - ноя 2021

Предметные области OECD FOS+WOS

  • 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ

Fingerprint

Подробные сведения о темах исследования «Testing Basic Gradient Turbulent Transport Models for Swirl Burners Using PIV and PLIF». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать