Symmetries in equations of incompressible viscoelastic Maxwell medium*

Vladislav V. Pukhnachev, Elena Yu Fominykh

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

1 Цитирования (Scopus)


We consider unsteady flows of incompressible viscoelastic Maxwell medium with upper, low, and Jaumann convective derivatives in the rheological constitutive law. We give characteristics of a system of equations that describe a three-dimensional motion of such a medium for all three types of convective derivative. In the general case, due to the incompressibility condition, the equations of motion have both real and complex characteristics. We study group properties of this system in the two-dimensional case. On this basis, we choose submodels of the Maxwell model that can be reduced to hyperbolic ones. The properties of the hyperbolic submodels obtained depend on the choice of the invariant derivative in the rheological relation. We also present concrete examples of invariant solutions.

Язык оригиналаанглийский
Страницы (с-по)309-319
Число страниц11
ЖурналLithuanian Mathematical Journal
Номер выпуска3
СостояниеОпубликовано - 1 июл. 2018


Подробные сведения о темах исследования «Symmetries in equations of incompressible viscoelastic Maxwell medium*». Вместе они формируют уникальный семантический отпечаток (fingerprint).