Study of the classification efficiency of difficult-to-distinguish vegetation types using hyperspectral data

Sergey Mihaylovich Borzov, Mark Aleksandrovich Guryanov, O. I. Potaturkin

Результат исследования: Научные публикации в периодических изданияхстатья

3 Цитирования (Scopus)

Аннотация

The article is devoted to the effectiveness research of methods of controlled spectral and spectral-spatial classification of hyperspectral data. In particular, minimum distance, support vector machine, mahalanobis distance and maximum likelihood methods are considered on the example of vegetative cover types differentiation. Significant attention is paid to studying the dependence of the accuracy of data classification with listed methods on the spectral features number and their selection method. The perspectivity of complex processing of spectral and spatial features, considering the correlation of close pixels, is demonstrated. The experimental results obtained with various methods of forming training sets are presented.

Язык оригиналаанглийский
Страницы (с-по)464-473
Число страниц10
ЖурналComputer Optics
Том43
Номер выпуска3
DOI
СостояниеОпубликовано - 1 мая 2019
Опубликовано для внешнего пользованияДа

Fingerprint Подробные сведения о темах исследования «Study of the classification efficiency of difficult-to-distinguish vegetation types using hyperspectral data». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать