Аннотация
The phase transitions during the oxidation of polycrystalline tin (β-Sn) were studied. The intense photoluminescence from SnO was observed in the annealing temperature range of 300–400 °C. An increase in the annealing temperature led to a sharp decrease in photoluminescence. It is associated with the phase transition of SnO to SnO2. Two approaches were proposed for obtaining the dual-band material based on tin oxides and GeSiSn compounds. Using the Sn-rich nanoislands grown on the vapor–liquid-solid (VLS) mechanism, the nanoislands having SnO(x) in their upper part, and the SiSn solid solution under SnO(x) were obtained after annealing. Furthermore, the growth technology of the dual-band material, which included tin oxides on top of a GeSiSn/Si multiple quantum well (MQW) structure, was developed. Tin oxides demonstrated the photoluminescence signal in the visible region, whereas the SiSn solid solution in nanoislands and GeSiSn/Si multiple quantum well structure showed the photoluminescence signal in the infrared range.
Язык оригинала | английский |
---|---|
Номер статьи | 151615 |
Журнал | Applied Surface Science |
Том | 573 |
DOI | |
Состояние | Опубликовано - 30 янв. 2022 |
Предметные области OECD FOS+WOS
- 2.05 ТЕХНОЛОГИЯ МАТЕРИАЛОВ
- 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ
- 1.04 ХИМИЧЕСКИЕ НАУКИ