Аннотация
Let G be a permutation group of a set Ω and k be a positive integer. The k-closure of G is the greatest (w.r.t. inclusion) subgroup G(k) in Sym(Ω) which has the same orbits as has G under the componentwise action on the set Ωk. It is proved that the k-closure of a finite nilpotent group coincides with the direct product of k-closures of all of its Sylow subgroups.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 154-159 |
Число страниц | 6 |
Журнал | Algebra and Logic |
Том | 60 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - мая 2021 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА