Аннотация
The twin group T n is a Coxeter group generated by n- 1 involutions and the pure twin group PT n is the kernel of the natural surjection of T n onto the symmetric group on n letters. In this paper, we investigate structural aspects of twin and pure twin groups. We prove that the twin group T n decomposes into a free product with amalgamation for n> 4. It is shown that the pure twin group PT n is free for n= 3 , 4 , and not free for n≥ 6. We determine a generating set for PT n , and give an upper bound for its rank. We also construct a natural faithful representation of T 4 into Aut (F 7 ). In the end, we propose virtual and welded analogues of these groups and some directions for future work.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 135-154 |
Число страниц | 20 |
Журнал | Geometriae Dedicata |
Том | 203 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 дек. 2019 |