Spectra of Deza graphs

S. Akbari, A. H. Ghodrati, M. A. Hosseinzadeh, V. V. Kabanov, E. V. Konstantinova, L. V. Shalaginov

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

A Deza graph with parameters (n, k, b, a) is a k-regular graph with n vertices such that any two of its vertices have b or a common neighbours, where b ≥ a. In this paper we investigate spectra of Deza graphs. In particular, using the eigenvalues of a Deza graph we determine the eigenvalues of its children. Divisible design graphs are significant cases of Deza graphs. Sufficient conditions for Deza graphs to be divisible design graphs are given, a few families of divisible design graphs are presented and their properties are studied. Our special attention goes to the invertibility of the adjacency matrices of Deza graphs.

Язык оригиналаанглийский
Число страниц12
ЖурналLinear and Multilinear Algebra
DOI
СостояниеОпубликовано - 7 фев 2020

Fingerprint Подробные сведения о темах исследования «Spectra of Deza graphs». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать