Spatial equilibrium in a multidimensional space: An immigration-consistent division into countries centered at barycenter

Результат исследования: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаярецензирование

Аннотация

It studies the problem of immigration proof partition for communities (countries) in a multidimensional space. This is an existence problem of Tiebout type equilibrium, where migration stability suggests that every inhabitant has no incentives to change current jurisdiction. In particular, an inhabitant at every frontier point has equal costs for all available jurisdictions. It is required that the inter-country border is represented by a continuous curve. The paper presents the solution for the case of the costs described as the sum of the two values: the ratio of total costs on the total weight of the population plus transportation costs to the center presented as a barycenter of the state. In the literature, this setting is considered as a case of especial theoretical interest and difficulty. The existence of equilibrium division is stated via an approximation reducing the problem to the earlier studied case, in which centers of the states never can coincide: to do this an earlier proved a generalization of conic Krasnosel’skii fixed point theorem is applied.

Язык оригиналаанглийский
Название основной публикацииMathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings
РедакторыMichael Khachay, Panos Pardalos, Yury Kochetov
ИздательSpringer-Verlag GmbH and Co. KG
Страницы651-672
Число страниц22
ISBN (печатное издание)9783030226282
DOI
СостояниеОпубликовано - 1 янв 2019
Событие18th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2019 - Ekaterinburg, Российская Федерация
Продолжительность: 8 июл 201912 июл 2019

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том11548 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

Конференция

Конференция18th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2019
СтранаРоссийская Федерация
ГородEkaterinburg
Период08.07.201912.07.2019

Fingerprint Подробные сведения о темах исследования «Spatial equilibrium in a multidimensional space: An immigration-consistent division into countries centered at barycenter». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Marakulin, V. (2019). Spatial equilibrium in a multidimensional space: An immigration-consistent division into countries centered at barycenter. В M. Khachay, P. Pardalos, & Y. Kochetov (Ред.), Mathematical Optimization Theory and Operations Research - 18th International Conference, MOTOR 2019, Proceedings (стр. 651-672). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Том 11548 LNCS). Springer-Verlag GmbH and Co. KG. https://doi.org/10.1007/978-3-030-22629-9_46