Space Weather Effects from Observations by Moscow University Cubesat Constellation

Andrey V. Bogomolov, Vitaliy V. Bogomolov, Anatoly F. Iyudin, Valery E. Eremeev, Vladimir V. Kalegaev, Irina N. Myagkova, Vladislav I. Osedlo, Vasiliy L. Petrov, Oleg Y. Peretjat’ko, Mikhail I. Prokhorov, Sergey I. Svertilov, Yury K. Zaiko, Ivan V. Yashin, Vitaliy Y. Prokop’ev, Aleksey S. Styuf, Sergey V. Krasnopeev, Aleksandr P. Papkov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование


Moscow State University is developing a project for a multi‐satellite constellation in-tended for the monitoring of space radiation. A number of small satellites of CubeSat format were launched into selected orbits crossing the wide range of magnetic drift shells. The primary scope for the project is the operational monitoring of near‐Earth’s radiation environment, i.e., fluxes of electrons and protons of Earth’s radiation belts and energetic particles of solar and galactic origin. To date, there are four CubeSat satellites operating in near‐Earth orbits, which deliver scientific and telemetric data. Thus, for the first time, a unique multi‐satellite constellation has been implemented, which makes it possible to simultaneously measure the particle and quantum fluxes at different areas in the near‐Earth space using the same type of instruments. A special compact detector of gamma quanta and energetic charged particles (electrons and protons) DeCoR has been developed to carry out radiation monitoring by CubeSats. With their help, observations of various effects of space weather have been made. These effects include a variety of electron fluxes in the outer belt during geomagnetic activity in late November–early December 2021, filling of polar caps by solar energetic particles accelerated in flares occurring in late October–early November, and the existence of stable electron fluxes near the geomagnetic equator.

Язык оригиналаанглийский
Номер статьи282
Номер выпуска5
СостояниеОпубликовано - мая 2022

Предметные области OECD FOS+WOS



Подробные сведения о темах исследования «Space Weather Effects from Observations by Moscow University Cubesat Constellation». Вместе они формируют уникальный семантический отпечаток (fingerprint).