Solving the Pure Neumann Problem by a Finite Element Method

M. I. Ivanov, I. A. Kremer, M. V. Urev

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

This paper deals with the solution of the pure Neumann problem for the diffusion equation by a finite element method. First, an extended generalized formulation of the Neumann problem in the Sobolev space H1(Ω) is derived and investigated. Then a discrete analog of this problem is formulated by using standard finite element approximations of the space H1(Ω). An iterative method for solving the corresponding SLAE is proposed. Some examples of solving model problems are used to discuss the numerical properties of the algorithm proposed.

Язык оригиналаанглийский
Страницы (с-по)359-371
Число страниц13
ЖурналNumerical Analysis and Applications
Том12
Номер выпуска4
DOI
СостояниеОпубликовано - 1 окт 2019

Fingerprint Подробные сведения о темах исследования «Solving the Pure Neumann Problem by a Finite Element Method». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать