Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data

D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov

Результат исследования: Научные публикации в периодических изданияхстатья

16 Цитирования (Scopus)

Аннотация

We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.

Язык оригиналаанглийский
Страницы (с-по)233-247
Число страниц15
ЖурналCommunications in Nonlinear Science and Numerical Simulation
Том54
DOI
СостояниеОпубликовано - 1 янв 2018

Fingerprint Подробные сведения о темах исследования «Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать