Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data

D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, M. A. Shishlenin

Результат исследования: Научные публикации в периодических изданияхстатья

11 Цитирования (Scopus)

Аннотация

Asymptotic-numerical approach to solving the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation by knowing the location of moving front data is proposed. Asymptotic analysis of the direct problem allows to reduce the original two-dimensional parabolic problem to a series of more simple equations with lower dimension for the determination of moving front parameters. It enables to associate the observed location of the moving front to the parameters which have to be identified. Numerical examples show the effectiveness of the proposed method.

Язык оригиналаанглийский
Страницы (с-по)1245-1254
Число страниц10
ЖурналComputers and Mathematics with Applications
Том77
Номер выпуска5
DOI
СостояниеОпубликовано - 1 мар 2019

Fingerprint Подробные сведения о темах исследования «Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front data». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать