Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front

D. V. Lukyanenko, A. A. Borzunov, M. A. Shishlenin

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование

2 Цитирования (Scopus)

Аннотация

An approach to solving coefficient inverse problems for nonlinear reaction-diffusion-advection equations is proposed. As an example, we consider an inverse problem of restoring a coefficient in a nonlinear Burgers-type equation. One of the features of the inverse problem is a use of additional information about the position of a reaction front. Another feature of the approach is a use of asymptotic analysis methods to select a good initial guess in a gradient method for minimizing a cost functional that occurs when solving the coefficient inverse problem. Numerical experiments demonstrate the effectiveness of the proposed approach.

Язык оригиналаанглийский
Номер статьи105824
ЖурналCommunications in Nonlinear Science and Numerical Simulation
Том99
DOI
СостояниеОпубликовано - авг 2021

Предметные области OECD FOS+WOS

  • 1.01 МАТЕМАТИКА
  • 1.01.PN МАТЕМАТИКА, ПРИКЛАДНАЯ

Fingerprint

Подробные сведения о темах исследования «Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать