Soliton Turbulence in Approximate and Exact Models for Deep Water Waves

Dmitry Kachulin, Alexander Dyachenko, Vladimir Zakharov

Результат исследования: Научные публикации в периодических изданияхстатья

2 Цитирования (Scopus)


We investigate and compare soliton turbulence appearing as a result of modulational instability of the homogeneous wave train in three nonlinear models for surface gravity waves: the nonlinear Schrödinger equation, the super compact Zakharov equation, and the fully nonlinear equations written in conformal variables. We show that even at a low level of energy and average wave steepness, the wave dynamics in the nonlinear Schrödinger equation fundamentally differ from the dynamics in more accurate models. We study energy losses of wind waves due to their breaking for large values of total energy in the super compact Zakharov equation and in the exact equations and show that in both models, the wave system loses 50% of energy very slowly, during few days.

Язык оригиналаанглийский
Номер статьи67
Число страниц21
Номер выпуска2
СостояниеОпубликовано - июн 2020

Fingerprint Подробные сведения о темах исследования «Soliton Turbulence in Approximate and Exact Models for Deep Water Waves». Вместе они формируют уникальный семантический отпечаток (fingerprint).