Аннотация
We consider two classifications of extensions of Johansson’s minimal logic J. Logics and then calculi are divided into levels and slices with numbers from 0 to ω. We prove that the first classification is strongly decidable over J, i.e., from any finite list Rul of axiom schemes and inference rules, we can effectively compute the level number of the calculus (J + Rul). We prove the strong decidability of each slice with finite number: for each n and arbitrary finite Rul, we can effectively check whether the calculus (J + Rul) belongs to the nth slice.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 1042-1051 |
Число страниц | 10 |
Журнал | Siberian Mathematical Journal |
Том | 58 |
Номер выпуска | 6 |
DOI | |
Состояние | Опубликовано - 1 ноя 2017 |