Аннотация
Existence, uniqueness and stability of kinetic and entropy solutions to the boundary value problem associated with the Kolmogorov-type, genuinely nonlinear, degenerate hyperbolic-parabolic (ultra-parabolic) equation with a smooth source term is established. In addition, we consider the case when the source term contains a small positive parameter and collapses to the Dirac delta-function, as this parameter tends to zero. In this case, the limiting passage from the original equation with the smooth source to the impulsive ultra-parabolic equation is investigated and the formal limit is rigorously justified. Our proofs rely on the use of kinetic equations and the compensated compactness method for genuinely nonlinear balance laws.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 789-856 |
Число страниц | 68 |
Журнал | Journal of Hyperbolic Differential Equations |
Том | 18 |
Номер выпуска | 4 |
DOI | |
Состояние | Опубликовано - 1 дек. 2021 |
Предметные области OECD FOS+WOS
- 1.01 МАТЕМАТИКА
- 1.03 ФИЗИЧЕСКИЕ НАУКИ И АСТРОНОМИЯ