Аннотация
A Schur ring (an S-ring) is said to be separable if each of its algebraic isomorphisms is induced by an isomorphism. Let Cn be the cyclic group of order n. It is proved that all S-rings over groups (Formula presented.), where p ∈ {2, 3} and k ≥ 1, are separable with respect to a class of S-rings over Abelian groups. From this statement, we deduce that a given Cayley graph over D and a given Cayley graph over an arbitrary Abelian group can be checked for isomorphism in polynomial time with respect to |D|.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 49-68 |
Число страниц | 20 |
Журнал | Algebra and Logic |
Том | 57 |
Номер выпуска | 1 |
DOI | |
Состояние | Принято в печать - 19 мая 2018 |