Separability of Schur Rings Over Abelian Groups of Odd Order

Результат исследования: Научные публикации в периодических изданияхстатья

Аннотация

An S-ring (a Schur ring) is said to be separable with respect to a class of groups K if every algebraic isomorphism from the S-ring in question to an S-ring over a group from K is induced by a combinatorial isomorphism. A finite group G is said to be separable with respect to K if every S-ring over G is separable with respect to K. We prove that every abelian group G of order 9p, where p is a prime, is separable with respect to the class of all finite abelian groups. Modulo previously obtained results, this completes a classification of noncyclic abelian groups of odd order that are separable with respect to the class of all finite abelian groups. This also implies that the relative Weisfeiler–Leman dimension of a Cayley graph over G with respect to the class of all Cayley graphs over abelian groups is at most 2.

Язык оригиналаанглийский
Страницы (с-по)1891-1911
Число страниц21
ЖурналGraphs and Combinatorics
Том36
Номер выпуска6
DOI
СостояниеПринято в печать - 1 янв 2020

Fingerprint Подробные сведения о темах исследования «Separability of Schur Rings Over Abelian Groups of Odd Order». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать