Searching for optimal classifier using a combination of cluster ensemble and kernel method

Vladimir B. Berikov, Lyailya Sh Cherikbayeva

Результат исследования: Научные публикации в периодических изданияхстатья по материалам конференциирецензирование

1 Цитирования (Scopus)


This work introduces a supervised classification algorithm based on a combination of ensemble clustering and kernel method. The main idea of the algorithm lies behind the expectation that the ensemble clustering as a preliminary stage would restore more accurately metric relations between data objects under noise distortions and existence of complex data structures, eventually rising the overall classification quality. The algorithm consists in two major steps. On the first step, the averaged co-association matrix is calculated using cluster ensemble. It is proved that the matrix satisfies Mercer's condition, i.e., it defines symmetric non-negative definite kernel. On the next step, optimal classifier is found with the obtained kernel matrix as input. The classifier maximizes the width of hyperplane's separation margin in the space induced by the cluster ensemble kernel. Numerical experiments with artificial examples and real hyperspectral image have shown that the proposed algorithm possesses classification accuracy comparable with some state-of-the-art methods, and in many cases outperforms them, especially in noise conditions.

Язык оригиналаанглийский
Страницы (с-по)45-60
Число страниц16
ЖурналCEUR Workshop Proceedings
СостояниеОпубликовано - 1 янв 2018
Событие2018 School-Seminar on Optimization Problems and their Applications, OPTA-SCL 2018 - Omsk, Российская Федерация
Продолжительность: 8 июл 201814 июл 2018


Подробные сведения о темах исследования «Searching for optimal classifier using a combination of cluster ensemble and kernel method». Вместе они формируют уникальный семантический отпечаток (fingerprint).