Аннотация
A form of Rosenbrock-type methods optimal in terms of the number ofnon-zero parameters and computational costs per step is considered. Atechnique of obtaining (m, k) -methodsfrom some well-known Rosenbrock-type methods is justified. Formulas fortransforming the parameters of (m, k) -schemesand for obtaining a stability function are given for two canonicalrepresentations of the schemes. An L-stable(3 , 2) -methodof order 3 is proposed, which requires two evaluations of the function:one evaluation of the Jacobian matrix and oneLU-decompositionper step. A variable step size integration algorithm based on the(3 , 2) -methodis formulated. It provides a numerical solution for both explicit andimplicit systems of ODEs. Numerical results are presented to show theefficiency of the new algorithm.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 34-44 |
Число страниц | 11 |
Журнал | Numerical Analysis and Applications |
Том | 13 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 25 фев 2020 |