Schemes of (m, k)-Type for Solving Differential-Algebraic and Stiff Systems

A. I. Levykin, A. E. Novikov, E. A. Novikov

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование


A form of Rosenbrock-type methods optimal in terms of the number ofnon-zero parameters and computational costs per step is considered. Atechnique of obtaining (m, k) -methodsfrom some well-known Rosenbrock-type methods is justified. Formulas fortransforming the parameters of (m, k) -schemesand for obtaining a stability function are given for two canonicalrepresentations of the schemes. An L-stable(3 , 2) -methodof order 3 is proposed, which requires two evaluations of the function:one evaluation of the Jacobian matrix and oneLU-decompositionper step. A variable step size integration algorithm based on the(3 , 2) -methodis formulated. It provides a numerical solution for both explicit andimplicit systems of ODEs. Numerical results are presented to show theefficiency of the new algorithm.

Язык оригиналаанглийский
Страницы (с-по)34-44
Число страниц11
ЖурналNumerical Analysis and Applications
Номер выпуска1
СостояниеОпубликовано - 25 фев 2020


Подробные сведения о темах исследования «Schemes of (m, k)-Type for Solving Differential-Algebraic and Stiff Systems». Вместе они формируют уникальный семантический отпечаток (fingerprint).