Rota—Baxter groups, skew left braces, and the Yang—Baxter equation

Результат исследования: Научные публикации в периодических изданияхстатьярецензирование


Braces were introduced by W. Rump in 2006 as an algebraic system related to the quantum Yang—Baxter equation. In 2017, L. Guarnieri and L. Vendramin defined for the same purposes a more general notion of a skew left brace. In 2020, L. Guo, H. Lang and Y. Sheng gave a definition of what is a Rota—Baxter operator on a group. We connect these two notions as follows. It is shown that every Rota—Baxter group gives rise to a skew left brace. Moreover, every skew left brace can be injectively embedded into a Rota—Baxter group. When the additive group of a skew left brace is complete, then this brace is induced by a Rota—Baxter group. We interpret some notions of the theory of skew left braces in terms of Rota—Baxter operators.

Язык оригиналаанглийский
Страницы (с-по)328-351
Число страниц24
ЖурналJournal of Algebra
СостояниеОпубликовано - 15 апр 2022

Предметные области OECD FOS+WOS



Подробные сведения о темах исследования «Rota—Baxter groups, skew left braces, and the Yang—Baxter equation». Вместе они формируют уникальный семантический отпечаток (fingerprint).